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A series of experiments are performed in a Hele-Shaw cell, consisting of two parallel 
closely spaced glass plates. A liquid (oil or water, both of viscosity of 1.0 cP) is 
injected a t  a constant volumetric flow rate, q,  to radially displace a much more 
viscous liquid (glycerine, 1050 cP) in the cell. Oil is immiscible with and water is 
miscible with glycerine. The data presented in this paper are taken mostly a t  late 
stages of the fingering process, when the pattern has multiple generations of splitting. 
Correlations with time are obtained for the finger length and the overall pattern 
density. The time- and lengthscales have been found for the immiscible case. At the 
same dimensionless time, immiscible patterns are similar and have the same 
generation of splitting. The overall density of each pattern decreases with time. The 
pattern shows fractal behaviour only after a certain number of generations of 
splitting. The fractal dimension of the immiscible pattern decreases from 1.9 to 1.82 
when the pattern goes from the third to the sixth generation of splitting. The fractal 
dimension of the miscible pattern reaches a constant value after about ten 
generations of splitting and the fractal dimension ranges from 1.50 to 1.69 for 
q/Db = 4.8 x lo5-7.0 x lo6. The miscible patterns are insensitive to dispersion for large 
q/Db.  For immiscible fingers h / b  scales with for capillary number Ca ranging 
from about 8 x to 0.05. For miscible fingers, h/b  is insensitive to dispersion and 
ranges from 5 to 10 for large q/Db.  Here D is the molecular diffusion coefficient in 
glycerine, b the cell gap width and h the splitting wavelength. 

1. Introduction 
A Hele-Shaw (1898) cell consists of two closely spaced plane parallel plates. It has 

been used as an analogue of two-dimensional isotropic homogeneous porous media 
for studying viscous fingering problems (Saffman & Taylor 1958 ; Chouke, van Meurs 
& van der Poel 1959; Benham & Olson 1963; Stalkup 1984; Homsy 1987). When a 
less viscous fluid displaces a more viscous one, the boundary between the fluids is 
usually uneven and the less viscous fluid ‘fingers ’ into the more viscous one. Once the 
less viscous fluid breaks through the porous medium, much of the resident fluid is left 
behind. This unstable phenomenon, resulting in an inefficient displacement, has been 
observed in laboratory systems (van Meurs 1957; Blackwell, Rayne & Terry 
1959). 

Viscous fingering in a Hele-Shaw cell has been used to  study the acidizing pattern 
in the fracture of an oil reservoir. To increase the oil production rate, the pay zone 
of an oil reservoir is sometimes hydraulically fractured by pumping a viscous fluid 
into the oil well. To prevent the closure of fracture, permanent flow channels can be 
created by injecting acid into the newly fractured reservoir to etch the walls of the 



224 J.-D. Chen 

fracture (Howard & Fast 1970). The flow pattern of the injected acid in the fracture 
will determine the channel pattern on the walls. 

For these processes i t  is important to  know the size and speed of fingers and the 
coverage of the fingering pattern. Although the Hele-Shaw cell does not contain some 
important features of a porous medium or the fracture of a porous medium, 
understanding the fingering process in a well-defined geometry should help us attack 
the more complex problems. Many studies have been reported on viscous fingering 
in Hele-Shaw cells and in porous media. For a good review on these subjects, see 
Homsy (1987). In  this paper we are interested in the dynamics of radial viscous 
fingers which is related to the problems stated above. 

Many studies have been reported on the radial viscous fingering in a Hele-Shaw 
cell. Paterson (1981, 1985) has studied the linear stability of a circular interface 
evolving into fingers. Using numerical calculations, Howison (1986) has shown some 
symmetrical immiscible fingering patterns similar to those reported by Paterson 
(1981). Chen (1987) has studied the qualitative effects of flow rate and plate 
roughness on the radial miscible and immiscible fingering patterns. Daccord, 
Wittman & Stanley (1986) have measured the fractal dimension and the finger width 
for water fingers developed in an aqueous non-Newtonian fluid. Rauseo, Barnes & 
Maher (1987) have studied the fractal dimension and the length- and timescales of 
radial immiscible fingering patterns. 

In  this paper we investigate experimentally the following problems, emphasizing 
the fingering process a t  late stages when the pattern has multiple generations of 
splitting. What is the effect of flow rate on the fingering pattern! What is the 
relationship between the finger length and time ! What are the lengthscale and the 
timescale in a radial flow geometry ? How does the pattern density change with time ? 
When does the pattern become a fractal! What is the relationship between the 
splitting wavelength of a finger and its speed ? 

2. Experiments 
The experimental system and procedure are the same as those described for a 

smooth Hele-Shaw cell by Chen (1987). The cell is made by using two smooth glass 
plates of 0.55 x 10 x 10 ern with four plastic shims of 75 & 2 pm in thickness clamped 
between the plates a t  the four corners by binder clips. The plate has a flatness of less 
than 5 pm across the 10 x 10 ern surface and a roughness of less than 0.04 pm. The 
top plate has a small hole (0.17 ern in diameter) drilled in the centre for injecting the 
fluids. The four shims of 2.5 x 3.2 ern are cut from one long piece and three 
measurements of thickness are made on each with a micrometer. Each shim is placed 
near each corner of the bottom plate with its long side perpendicular to the diagonal 
of the plate and the midpoint of one long side over the corner of the plate. The top 
plate is then placed on top of the four shims and aligned with the bottom plate and 
four binder clips clamp the plates. 

To improve visualization, the displacing fluids are dyed blue. Two different types 
of displacement experiments are : (a )  dyed oil displacing glycerine, and ( b )  dyed water 
displacing glycerine. Type (a)  is immiscible, and ( b )  is miscible. 

Three different flow rates are used for type ( a )  : q = 1.40 x 5.35 x and 
2.03 x ml/s. To check the reproducibility of the experiment, each flow rate is run 
twice. For type (b )  five different flow rates are used: q = 7.12 x lop5, 1.40 x lop4, 
5.35 x and 1.05 x lop3 ml/s. Only the third flow rate is run twice to 
check the reproducibility. In  type ( a )  the glycerine wets the glass plate. The 

7.50 x 
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interfacial tension, y ,  between dyed oil and glycerine is 20.0 dyn/cm. The viscosity 
of the displacing phase pi is 1.0 cP, and that of glycerine p = 1050+30 cP. The 
viscosity contrast ratio, p-pi/p+pi, is 1 in both cases. The glycerine has a density 
p = 1.26 gm/cm3. The densities of dyed water and dyed oil are 1.0 and 
0.74 gm/cm3, respectively. All experiments are run at  room temperature, 24.0" to 
24.5 "C. 

The dry cell is set horizontally, then the glycerine is injected through the central 
hole in the top plate until it fills most of the flow space in the cell. Since the 
displacement of air by glycerine is stable, a circular interface is formed. The 
displacing fluid is then injected by a syringe pump a t  a selected constant volumetric 
flow rate. In the miscible case the flow rates are high enough that the molecular 
diffusion of dye into glycerine is negligible. The displacement process is recorded as 
time-sequence photographs by a 35 mm camera. Taking advantage of the circular 
interface formed by injecting glycerine into an empty cell, we can measure the gap 
width of the cell. The area invaded by glycerine injected a t  a constant flow rate is 
measured as a function of time from time-sequence photographs. Two flow rates are 
used for this purpose : q = 1.40 x and 2.03 x ml/s. The calculated gap width 
is found to be 75f2  pm for both flow rates. This indicates that there is no bending 
in the cell. 

3. Results and discussion 
For the immiscible case the dimensionless flow rate, ,uq/yb2, ranges from 1.30 to 

19.0, the capillary number, Ca = p V / y ,  from about lop3 to lop1, and the Reynolds 
number, pVb/,u, from about to Here b is the gap width of the cell and V is 
the finger speed, as defined in 53.4. For the miscible case, the dimensionless flow rate, 
q/Db, ranges from 4.8 x lo5 to 7.0 x lo6, the PBclet number, bV/D, from lo3 to lo5, 
and the Reynolds number from Here we assume the molecular diffusion 
coefficient, D, in glycerine to be 2 x lo-' cm2/s. (The self-diffusion coefficient of 
glycerine at  24 "C is 2 x cm2/s (Burnett & Harmon 1972).) (Strictly speaking, 
Taylor dispersion plays an important role in miscible experiments, and the correct 
definition of the P6clet number should be based on some measure of the dispersion 
coefficient not the molecular diffusion coefficient. Here we use the molecular diffusion 
coefficient as a reference value of the dispersion coefficient (Homsy 19871.) Note that 
these values are estimated based on the properties of the more viscous fluid. 

to 

3.1. Qualitative observations 

For the immiscible case a t  low flow rate, pq/yb2 = 1.30, the fluid boundary initially 
expands, becomes wavy and splits to form first-generation fingers. Owing to  the 
radial geometry, these fingers spread and develop into a fan shape as they grow, and 
some of them split to form second-generation fingers when the width is big enough. 
This cascading process of finger splitting is shown in figure 1 ( a ) ,  which is an overlay 
of digitized images of nine selected time-sequence photographs. Owing to the finite 
size of the cell, only two generations of fingers are possible a t  this low dimensionless 
flow rate. As the flow rate increases, the fingers split more frequently a t  a narrower 
width. Third and sixth generations of splitting occur within the sample a t  pq/yb2 = 
4.99 and 19.0, respectively, as shown in figures 1 ( b )  and 1 (c). The shielding of small 
fingers by large ones can be seen in figures l ( b )  and 1(c ) .  Spreading, splitting and 
shielding have been discussed in detail by Homsy (1987) as the three basic growth 
mechanisms of both miscible and immiscible fingering processes. These patterns seem 
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FIGURE 1 .  Overlays of digitized images of selected time-sequence photographs showing the 
evolution of immiscible fingering patterns at three different flow rates. Different shadings indicate 
different times. (a) y = 1.40 x ml/s (py / yb2  = 1.30), at t = 37, 157, 277, 397, 517, 758, 1058, 
1358 and 1658 s. (b) y = 5.35 x ml/s (,uq/ybZ = 4.99), at t = 42,82, 122, 162, 202, 242, 343 and 
493 s .  (c)  q = 2.03 x ml/s (,uq/yb2 = 19.0), at t = 11,  19, 27, 35, 43, 51, 59 and 67 s. 
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FIGURE 2. (a)  Original photograph of the last pattern of figure 1 (a),  and ( b )  that of the first pattern 
of figure l ( b ) .  Note the geometrical similarity between the two patterns. The former has a 
dimensionless longest finger length R, = 690 a t  dimensionless time T = 9.3 x lo5, and the latter has 
a dimensionless longest finger length R, = 712 at dimensionless time T = 1.3 x 10'. The thick dark 
line in the photographs is the fluid injection tube with a 0.17 cm outside diameter. 
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FIGURE 3. Miscible patterns at flow rate q = 1.40 x lo-* ml/s (q/Db = 9.3 x lo5) a t  (a )  228 s and 
( b )  459 s ,  showing thinner water layers a t  the bases of side fingers and along the boundary of 
the pattern, and widening of the branches. The thick dark line is the fluid injection tube. 
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FIGURE 4. Miscible patterns a t  flow rate q = 7.50 x ml/s (q/DD = 5.0 x los) a t  (a )  t = 42 s and 
( b )  82 s, showing thinner water layers a t  the bases of side fingers and along the boundary of the 
pattern, widening of the branches and interpenetration of fingers. 
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to  be geometrically similar at the same generation of splitting. For example, we can 
see that the last pattern in figure 1 ( a )  is similar to the first in figure 1 ( b ) ,  both a t  the 
second generation of splitting. The original photographs of these two patterns are 
shown in figure 2 (the injection tube has been removed from the digitized images 
shown in figure 1 ) .  We shall discuss this similarity in more detail in $3.2. 

The fingering pattern formed at the same flow rate is not exactly the same each 
time for either the miscible or immiscible case. Owing to the absence of interfacial 
tension, the miscible finger is not of uniform thickness, as can be seen from the non- 
uniform colour strength in the photographs shown in figures 3 and 4 (see also, Chen 
1987). The colour is weaker (brighter in black-and-white pictures) along the 
boundary of the pattern, indicating a thinner water layer there. This is more obvious 
a t  higher flow rates. Also, the bases of some side fingers shielded from further growth 
have a weaker colour because when they cease to grow, no more dyed water flows 
through the bases. There are ‘loops’ in the fingering pattern at flow rates higher than 
5.35 x lop4 ml/s, as shown in figure 4, resulting from interpenetration between the 
fingers. 

There is not much difference in the global structure of miscible patterns a t  
different flow rates, as can be seen by comparing figures 3 and 4. This means that 
the miscible patterns are insensitive to  dispersion for the dimensionless flow rates 
tested, q/Db = 4.8 x 105-7.0 x lo6. I n  $3.4 we shall show that the splitting wavelength 
of miscible fingers is also insensitive to dispersion for the flow rates tested. For all flow 
rates, owing to the continuous flow of water, the size of branch increases with time 
and is bigger near the centre than near the tip, as shown in figures 3 and 4. The 
growth mechanisms discussed in this and the previous paragraph, i.e. non-uniform 
thickness, interpenetration and loops, and growing branch width, cannot be 
described by the diffusion-limited aggregation (DLA) model (Witten & Sander 
1983). 

3.2. Finger length 

In this section we consider the correlation between the finger length and time. it is 
hoped that if we can find such a correlation, then we shall be able to predict how far 
the pattern will reach at  a given time under various experimental conditions, such 
as different gap, flow rate or physical properties of fluids. For each finger the finger 
length, rt, is defined as the distance from the injection point to  the farthest point on 
its tip. The length is measured with a digital vernier micrometer. The maximum error 
of measurement is f 2 YO of the average value of three repeated measurements. From 
the sequence of photographs of each experiment we first identify the fingers on the 
last photograph and then follow them in time-reverse order. 

For the immiscible case the finger length rt can be expressed as a function of 
relevant quantities 

rt = rt(1, b, y ,p> t ) .  

1Jsing a dimensional analysis, this can be rearranged in a different form containing 
three dimensionless groups 

The equation suggests that if we plot r,/b against qt/b3, there will be some correlation 
between these values with pq/yb2 as a parameter. Figure 5 shows such a plot for the 
data of the longest finger of the first run of the three different flow rates. Although 
the data roughly fall onto a straight line in a log-log plot, it is desirable to include 
the parameter ,uq/yb2 in the coordinates. 
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Assuming that the length- and timescales are related to some power of ,uq/yb2, the 
above equation can be rearranged as 

F - -  (:[;;I”.@[ - -  ““I”) = 0.  
b3 yb2 

By non-dimensionalizing 

and 

the governing equations for Hele-Shaw flows, 

b2 

12P 
P v = --v 

Pi-P = Y K y  

we find p = 3 a -  1. Here K is the curvature of interface, pi is the pressure of 
the displacing fluid, p and v are the two-dimensional gap-averaged pressure and 
velocity fields in the displaced fluid, respectively. To find the value of a we plot 
( r , / b )  &q/yb2]” against (q t /b3)  b q / y b 2 ] p  for the longest finger of each experiment using 
different values of a. For a = 1 we find that the data points roughly fall onto one 
straight line, as shown in figure 6. Data of two runs a t  each flow rate shown in the 
figure indicate the reproducibility of the experiment. The dashed line in figure 6 
represents the least-square-fit to the data. 

(1) R, = 0 . 3 2 ~ 5 5 .  

Here 

t 
and Te-. 

t o  
(3) 

This means that during the growth of the radial fingering pattern the lengthscale 
ro and timescale to are 

and 

-1 

To = b[$] 

t -“[El2.  
O -  q yb2 

( 4 )  

(5) 

In figures 5 and 6 the data for the highest flow rate show an increase in slope. This 
indicates perhaps a change in fingering mechanism as the flow rate increases. This 
mechanism may be connected to increases in the wetting film thickness and the finger 
tip curvature. As the flow rate increases, both the wetting film thickness behind the 
finger and the finger tip curvature increase. Tabeling, Zocchi & Libchaber (1987) 
have studied the wetting film thickness and the Saffman-Taylor instability in a 
linear cell. They indicate that the wetting film has a stabilizing effect on the finger. 
Kopf-Sill & Homsy (1988) have shown that the tip curvature stabilizes the finger in 
a linear cell. In  $3.4 we also observe the stabilizing effect of tip curvature. It is not 
clear how these stabilizing effects affect the change in the slope of our data. It is also 
interesting to note that Kopf-Sill & Homsy find no fractal fingering in a linear cell. 
In  $3.3 we find fractal fingering a t  the highest flow rate. 

Rauseo et al. (1987) use the same scalings as shown in (4) and (5) and plot the scaled 
perimeter length of fingering patterns against the scaled time for experiments with 
b = 0.10, 0.15 and 0.24 cm. They find that the data do not collapse onto one curve 
and suggest that there may be some dependence on b through the wetting film effect. 
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FIGURE 5.  Data of ( r t / 6 )  versus ( g l / b 3 )  for the longest finger of first run a t  pq/yh2 = 1.30 ( x ) ?  

4.99 (0) and 19.0 (+).  

(See (18) below for a more appropriate boundary condition proposed by Park & 
Homsy 1984.) Unfortunately, the values of q and Ca are not reported along with the 
data. In our experiments b = 0.0075 cm, which is one order of magnitude smaller 
than their b .  Further experiments are needed to check whether the scales are 
dependent on b .  
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FIQURE 7 .  Data of R, versus T (i.e. ( r J b )  (q/Db) versus (q t /b3)  (q/Db)*) for the longest finger of five 
flow rates q/Db = 4.75 x lo5 (n), 9.3 x lo5 ( x ), 3.57 x lo6 (0, A), 5.0 x lo6 (V), 7.0 x lo6 (+  ). 
Dashed line represents equation (8). 

In $3.1 we pointed out that  there is some geometrical similarity between the two 
patterns shown in figure 2. Now let us compare these fingering patterns in terms of 
the length- and timescales. Both patterns are a t  the stage of second-generation 
splitting. The dimensionless length and time are given in the captions of figure 2. The 
closeness of the dimensionless lengths and times and the geometrical similarity 
between the patterns by visual inspection confirm that (4) and ( 5 )  are the right 
scalings. This means that in terms of these scales both patterns are roughly of the 
same size and 'age'. This also suggests that  the generation of splitting is a good 
indication of the 'age' of the pattern. 

Similarly, for the miscible case we have 

which can be rearranged as 
F - -  - -  

(?[;br7::[Jb]? =" 

We find that for 01 = 1 and /3 = 2 the data points of R, versus T for the longest fingers 
of five different flow rates roughly fall onto a straight line, as shown in figure 7 .  The 
dashed line represents the least-square-fit to the data, 

Rt = 0.18!P55. (8) 

Here R, and T are defined similarly as for the immiscible case with 

and 

The closeness of the data from two runs a t  flow rate q = 5.35 x 
reproducibility of experiments. 

ml/s indicates the 
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3.3. Density of Jinger pattern 
To investigate the evolution of the density of fingering pattern, we digitize the time- 
sequence photographs of each experiment and plot the density of each pattern as a 
function of normalized radius r,. The normalized radius r,  is defined as the radius r 
divided by the radius of the longest finger in each pattern. The density d is defined 
as the ratio of the area occupied by the pattern within a radius r to  m2. The pixel size 
of digitization is 0.01 x 0.01 em. 

Figures 8 ( a ) ,  8 ( b )  and 8 ( c )  show the evolution of d-r, curves of the immiscible 
fingering patterns shown in figures 1 (a ) ,  1 ( b )  and 1 ( c ) ,  respectively. Each d-r, curve 
corresponds to each pattern shown in the respective figure. As time increases the 
d r ,  curve shifts towards the lower-left corner of the plot. From these plots we see 
that the density of the fingering pattern decreases with time. At ,uq/yb2 = 1.3 when 
the first-generation fingers just begin to form the pattern is very compact, so most 
of the d-r, curve is close to d = 1, as shown in figure 1 (a) .  Comparison of these plots 
of different flow rates shows that there is some similarity in the d-r, curves for 
patterns a t  the same generation of splitting. Indeed, the last curve in figure 8 ( a )  has 
a similar shape to the first one in figure 8(b ) .  This is consistent with the geometrical 
similarity between the last pattern of figure 1 (a)  and the first pattern of figure 1 (b) ,  
both a t  the secondary splitting stage, as discussed in $3.2 and shown in figures 2 (a )  
and 2 ( b ) .  This suggests that  if the cell is big enough to allow for further splitting, the 
pattern formed a t  low values of ,uq/yb2 will be similar to that formed a t  high 
values. 

As the number of splittings increases, the intermediate portion of the d-r, curve 
of the pattern becomes a straight line in a log-log plot with slope -a. In  our 
experiments, only a t  the highest flow rate did a significant portion of the curve 
become close to a straight line. This is because at low flow rates there is not enough 
splitting and the size of the finger is comparable with the size of the pattern. Figure 
9 shows that for ,uq/yb2 = 19.0 the value of the fractal dimension (Mandelbrot 1983), 
2 -a ,  decreases from about 1.9 to 1.82 as qt /b3  increases from about 9 x lo4 to 
3 x lo5. From figures 1 (c) and 9 we see that the value of 2-a  decreases from 1.9 to 
1.82 when the pattern goes from the third to the sixth generation of splitting. Rauseo 
et al. (1987) report that the value of 2 -a ranges from 1.69 to 1.92 for ,uq/yb2 ranging 
from 3 to 16. They find that there is no apparent dependence of 2 -a on ,uq/yb2. This 
can be explained by our observation that the value of 2 - a  depends on the growth 
time. It is obvious that 2 -a equals 2 when the interface is a circle, and as the fingers 
develop it will have a value between 1 and 2. From this we can argue that ,uq/yb2 is 
not the only parameter controlling the value of 2 -a and that the value should also 
be dependent upon the time (or the generation of splitting). Unfortunately, the time 
is not reported along with the value of 2 -a in their paper. Further experiments are 
needed to check whether 2 -a approaches some constant as the number of splittings 
(‘age’) increases, and whether the constant is independent of the flow rate. For 
miscible fingering patterns we find that the value of 2 - a approaches some constant 
as the number of splittings (‘age’) increases. This is reported later in this section. 

In  figure 10 we plot the overall density d,, the density d a t  r, = 1, of each pattern 
at  different flow rates as a function of (qt/b3) (pq/yb2) .  Data of two runs a t  each flow 
rate are given, showing that d, decreases with time. The dashed line represents the 
least-scluare-fit to the data, 

d, = 1.25-0.0481n -~ . ($ ;:2) 
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FIQURE 8. Sequence of d versus r, curves for the immiscible fingering patterns shown in figures 1 (a ) ,  
1(b)  and 1 ( c )  at (a )  pq/yba = 1.30, ( b )  4.99 and (c) 19.0. Each curve corresponds to each pattern 
shown in the respective figure, and the time for each curve can be found in the caption of figure 
1 ,  and time increases from the upper-right corner to the lower-left corner. 

It is not clear why d ,  correlates with (qt/b3)(,uq/yb2) but not with qt/b3 and (q t /b3)  
( ~ q / y b ~ ) ~ .  In view of the correlations between the finger length with the last 
two dimensionless times (see figures 5 and 6), a simple argument suggests that  d ,  
should correlate with them, but plots (not shown) of d ,  against these two dimension- 
less times show that there is none. 

A typical set of d-r, curves for the miscible pattern is shown in figure 11. Similarly 
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FIGURE 9. Value of 2-a as a function of qt /b3  for the last seven patterns shown in figure 1 (c). 
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FIGURE 10. Overall density d ,  as a function of (q t /b3)  (,uq/yb2) for two runs at each flow rate, 
,uq/yb2 = 1.30 ( x  ), 4.99 (0) and 19.0 (+). Dashed line represents equation (11). 
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FIGURE 11. Sequence of d versus r,  curves for miscible fingering patterns at q = 1.40 x ml/s 
(q/Db = 9.3 x lo5) at t = 28, 68. 108, 148, 188. 228, 268, 359 and 459 s. The time of each curve 
increases from the upper-right corner t o  the lower-left corner. Patterns at t = 228 and 459 s are 
shown in figure 3. 
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FIGURE 12. Overall density d, as a function of qt/b3 at q/Db = 4.75 x lo5 (a), 9.3 x lo5 ( x ), 
3.57 x lo6 ( O ) ,  5.0 x lo6 (0). 7.0 x lo6 (+) .  Dashed line represents equation (12). 
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to the immiscible case, the dr, curve shifts towards the lower-left corner of the figure 
as time increases. At late stages the intermediate portion of the curves becomes a 
roughly parallel straight line wit)h slope -a in a log-log plot. The lines are straighter 
than hhose shown in figure 8 for the immiscible patterns, where the number of 
splittings is much less and the sizes of fingers are much bigger than those of the 
miscible patterns. At later stages (roughly more than ten generations of splitting) the 
value of --a reaches a constant. Analysis of patterns developed at  other flow rates 
shows the same behaviour. This means that the fingering pattern becomes more and 
more sparse as it grows through splitting, and is a fractal object provided that there 
is enough splitting. For the five flow rates tested the values of -a are 0.50, 0.43, 0.42 
(0.41), 0.42 and 0.45 in order of increasing flow rate. The value in parentheses is for 
the second run a t  q = 5.35 x lo-* ml/s. This means that the fractal dimension, 2-a ,  
of miscible fingering patterns ranges from 1.69 to  1.50 and is insensitive to the flow 
rates tested. For radial water fingering patterns in a non-Newtonian aqueous 
polymer solution, Daccord et al. (1986) find that the fractal dimension ranges from 
1.65 to  1.75. 

Figure 12 summarizes d, for miscible patterns a t  different times for the five flow 
rates tested. The dashed line in the figure represents the least-square-fit to the 
data, 

d, = 1.43-0.0971n 

Somewhat similarly to the immiscible case, d, correlates with qt/b3 but not with 
(qtlb3) (q/Db) or (qt/b3) ( d D b ) 2 .  

3.4. Xplitting wavelength 

For each experiment, time-sequence photographs are examined and the splitting 
wavelength, A, is identified as the maximum-to-maximum distance of the earliest 
discernible indentation on a finger tip. For each such indentation of the immiscible 
finger three repeated measurements of the distance are made and for all data the 
maximum error is f 5 %  of the average value of three measurements. The finger 
speed V a t  the moment, t ,  of discernible indentation is the average of the speeds of 
the two new fingers. The speed of each new finger is calculated from 

( r t ( t+  6t)  -rt(t -6t))/26t, 

where 6t is the time interval between two consecutive photographs. For all data the 
speed of the new finger is within 7 %  of the finger speed V.  

In  figure 13 we compare our h/b versus Ca data with the results of linear stability 
analyses and experimental data available in the literature. It is useful to refer to 
figure 1 when reading the data in figure 13. Data from two runs at each flow rate are 
shown. Each symbol represents data collected from each flow rate. In  each group of 
each symbol the data a t  higher Ca roughly corresponds to an earlier generation of 
splitting, since for constant flow rate the finger speed is larger when the pattern is 
smaller. The chain-dashed line in figure 13 is the least-square-fit to  our data, 

for Ca ranging from 0.0008 to 0.05. The fact that  h / b  scales with CU-O.~~,  instead of 
as predicted by linear stability analyses for a planar interface, shows that the 

finger curvature plays a role in the splitting. This stabilizing effect of finger curvature 
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Ca 

FIGURE 13. Comparison between linear stability analyses and experimental data ( A / b  or w/b)  as 
functions of Cu for immiscible fingers. Our data from two runs at each flow rate are shown: 
, q / y b 2  = 1.30 ( x ), 4.99 (0) and 19.0 (+) .  Chain-dashed line and chain-dotted line, respectively, 
represent the least-square-fits to our A / b  data, equation (13), and Kopf-Sill & Homsy’s (1988) 
w/b data. Dotted, dashed and solid lines represent theoretical results from equations (14), (15) and 
( 16), respectively. 

on splitting has been reported by Kopf-Sill & Homsy (1988) on experiments for long 
fingers in a linear cell. The chain-dotted line in figure 13 represents the (w/b)-Ca 
relationship reduced from the least-square-fit result presented in their figure 12. Here 
w is the average finger width, which is a measure of the splitting wavelength A. w is 
larger than A, because A is measured a t  the beginning of splitting and w is measured 
when the splitting is complete (see Kopf-Sill & Homsy 1988 for the definition 
of w). Their results show that the average finger width scales with Ca-0.35 for 
0.0055 < Ca < 0.08. 

It is also interesting to compare our results with linear stability analyses. In figure 

(14) 

13 the dotted line represents 

(15) 

h - = XCa-f, 
b 

h 
- = 2 .78~a- t ,  
b 

the dashed line represents 

and the solid line represents the (A/b)-Cu relationship (Schwartz 1986) obtained from 
the positive real root of 

where J is 3.8 and A = ( h / b )  Cat. Equation (14) is derived (Saffman & Taylor 1958; 
Chuoke et al. 1959; Paterson 1981) based on the following boundary condition: 

p i -p  = .(E+i). 
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Equation (16) is obtained by Schwartz (1986) from a linear stability analysis for a 
planar interface, using a more appropriate boundary condition for the pressure jump 
derived bv Park & Homsv (19841 : 

Here u is the radius of curvature of the projection of the interface on the plate. This 
boundary condition is valid for small Ca and considers the effects of the wetting film 
and of the three-dimensionality near the interface. When there is no wetting film or 
in the limit of zero Ca, (16) reduces to (15) (Schwartz 1986). It is clear from figure 13 
that these linear stability analyses for a planar interface fail to predict the smaller 
slopes in Kopf-Sill & Homsy's data and ours. It is interesting to note that the 
boundary condition proposed by Park & Homsy (1984) seems to correct the slope in 
the right direction, as shown by the solid line in figure 13 for the results of Schwartz 
(1986). No theoretical calculations that include the effects of tip curvature and finger 
interaction are available for comparison with the experimental data. Numerical 
calculations on the evolution and stability of a long finger have been reported by 
DeGregoria & Schwartz (1985). Numerical calculations on the interaction of multiple 
fingers and the evolution of fingering patterns have been done by Tryggvason & Aref 
(1983, 1985). 

For miscible fingers, the wavelength, A,  a t  splitting is not sensitive to the flow rates 
tested. For each experiment h is measured for at least nine splitting fingers. In order 
of decreasing flow rate, the mean and standard deviations of h are 0.048f0.008, 
0.057f0.012, 0.047f0.006, 0.064+0.017, 0 . 0 6 6 ~ 0 . 0 1 1  cm. This means that h 
ranges from 5b to 10b and is not sensitive to the flow rates tested. And its value is 
larger than the 46 predicted by the linear stability analysis of Paterson (1985). Note 
that the comparisons are not exact, since the data are obtained from long fingers and 
the linear stability analysis is based on a circular interface. In  addition, the fingers 
are not of uniform thickness, whereas the linear stability analysis assumes a uniform 
thickness (Paterson 1985). Paterson showed in his experiments that many of the 
incipient fingers appeared to have a wavelength of 4b, where b = 0.15 and 0.3 cm and 
q/Db ranges from about lo' to 10'. In our experiment b = 0.0075 cm and q/Db = 
4.8 x 105-7.0 x lo6. Daccord et al. (1986) reported a finger width of 4.6b for b ranging 
from 0.02 to 0.12 ern when water radially fingers into a non-Newtonian aqueous 
polymer solution. Our data suggest that for large dimensionless flow rate q/Db, the 
value of h / b  is insensitive to dispersion and ranges from 5 to 10. 

4. Summary 
A series of experiments on miscible and immiscible viscous fingering has been 

carried out. The displaced fluid is glycerine of viscosity 1050 CP and the displacing 
fluid is either miscible (water) or immiscible (oil) with glycerine, with viscosity 1.0 
cP. The data presented in this paper are taken mostly a t  late stages of finger growth 
when the pattern has multiple generations of splitting. In  $3.1 we find a geometrical 
similarity between immiscible patterns a t  the same generation of splitting. This 
finding is confirmed quantitatively in $3.2. We also show that the miscible patterns 
are insensitive to dispersion for large q/Db. In  $3.2 we find correlations between the 
finger length and time. In  particular we estblish the correct length- and timescales 
for the immiscible pattern. We show that two immiscible patterns are geometrically 
similar a t  the same dimensionless time, if the correct length- and timescales are used. 
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This observation also shows that a t  the same dimensionless time the two similar 
patterns have the same generation of splitting. We suggest that the generation of 
splitting is a good indication of the ‘age’ of the pattern. In  $3.3 we find that the 
pattern has to go through a certain number of generations of splitting before it shows 
fractal behaviour. Our data for the immiscible pattern show that the fractal 
dimension, 2-a, decreases from 1.9 to 1.82 when the pattern goes from the third to  
the sixth generation of splitting. Further experiment is needed to check whether the 
value of 2 -a  will reach a constant, what the constant is, and at  which generation of 
splitting it reaches this constant. Our data for the miscible pattern show that the 
fractal dimension reaches a constant when the pattern has more than ten generations 
of splitting. The constant value ranges from 1.50 to 1.69 and is insensitive to the flow 
rates tested, q/Db = 4.8 x 105-7.0 x lo6. In  53.4 we find that for the immiscible finger 
hlb scales with Ca-0.31. The exponent, -0.31, is close to that of -0.35 obtained by 
Kopf-Sill & Homsy (1988) for long fingers in a linear cell. This is in agreement with 
their observation that the finger tip curvature stabilizes the finger. For the miscible 
finger the value of A / b  is insensitive to dispersion and ranges from 5 to 10 for large 
d D b .  

I thank J. B. Roberts and B. Schmidt for their help with the data collection. I also 
thank the referees for their useful criticisms on the manuscript of this paper. This 
work was performed at Schlumberger-Doll Research, Old Quarry Road, Ridgefield, 
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